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Introduction

The LHC (Large Hadron Collider) is the biggest particle accelerator in the world and has the
highest luminosity. It is circular with a perimeter of 26.7 km (we will use s or z to denominate
this coordinate). It is used especially with protons and there are 2 beams in opposite directions,
both in a di�erent pipe. There is a ~10-10mbar vacuum and the cryogenic parts (where the su-
perconducting electromagnets are) are cooled down to 1.9 K with liquid Helium. The accelerator
is composed of 8 octants as shown in �gure 1. In this schema, the IP are the interaction points
(Atlas, Alice, CMS and the LHCb are detectors). It was initiated in 2008 and will be stopped in
2019 in order to upgrade it to the HL-LHC (High Luminosity) with a luminosity 5 times higher
(by increasing the proton population) and the beam energy will go from 362 MJ to 675 MJ per
beam.

Some important parts to notice in the HL-LHC are the multipoles (bipoles (to bend), quadrupoles
(to focus), sextupoles and octupoles), collimators (movable jaws in transverse axis made with a
certain material designed to absorb beam photons) and RF cavities.

Figure 1: Design of the LHC

The proton beam is Gaussian and we distinguish �the core� ∈J-3σv , 3σv K and the �halo� (>3σv),
as shown in �gure 2. The core (99.7% of the beam) is the part that we want to keep and the
halo (0.3%) is the potentially dangerous particles that may scatter and damage the components
of the accelerator. From past years experiments, it was concluded that the transverse pro�le
population wasn't exactly Gaussian in the LHC and that we would have to remove even more
particles (cf. blue lines in �gure 2).

Figure 2: Beam population (image from [2])
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Part I

Global understanding

1 The Hollow Electron Lens (HEL)

The HL-LHC will need a collimation system because of the Betatron oscillation and the intra-
beam scattering (there will also be reasons for losses such as failure in di�erent components and
dust created by them, the imperfect vacuum, etc.).

The way to remove the halo is by making it crash into the collimators and it must have an
e�ciency of at least 99.99992% in order to be below the quench limit (47 mW.cm-3, data from
[1]). In 2008, there was a quench and the consequences were disastrous: tons of helium leaked
out, the vacuum was broken, etc. Two ways have been thought of to clean this halo: the HEL
(Hollow Electron Lens) and the crystal collimation. They work as shown in �gure 3.

Figure 3: Two di�erent ways of collimating: the HEL and the crystal collimation (schema from
[1])

The key component that we studied to remove the halo is the HEL. It is a hollow cylinder (an
annular beam of electrons) which will go around the beam halo and that will kick the particles
out in the jaws. It was �rst put in the Tevatron Collider (the TEL, see [1]). The shape of the
hardware is as shown in �gure 4. The assumption was made that it would not a�ect the proton

beam at the injection and extraction points as it didn't a�ect it in the Tevatron.

Figure 4: Design of the HEL

We had to study how it works, how di�erent parameters in�uence it and how we could
optimize it by simulating its use in the HL-LHC with Merlin 5 (a C++ Library for the HL-
LHC).

We also had to consider that a cold section was necessary (because the HEL needs supercon-
ductivity), that the two beam pipes have to be separated to avoid beam-beam interactions and
that it needs space (we did the tests with a length of 3m).
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2 The Lossmaps

First, I had to get a grasp of how Merlin was working, how to output data from it and launch
simulations so I �rst looked at the lossmaps. The lossmaps show where the particles are lost in
the accelerator. For instance I learned how to output and plot the data out of the �les, launch
simulations, etc. I hence did plot some lossmaps as shown in �gure 5. I ran many simulations
with di�erent number of turns and di�erent number of particles. It showed clearly where most of
the losses were and how long the simulations took depending on the number of turns/particles.
It con�rmed that most of the losses were e�ectively in the collimators (TCP, TCS, etc.). There
were however a few unwanted losses in other spots.

Figure 5: Lossmaps for 100 turns and di�erent numbers of particles: from top left to bottom
right: x10 particles between each plot (log scale)

The �gure 5 shows that it takes a lot of particles in order to see where all the losses are. For
each of these simulations, new peaks appear and if more were done, more peaks would have been
seen as it is a log scale. Also, the more particles there are, the longer it takes. For instance,
plotting 106 particles took about 6h when it only took 30s for 10 particles. A balance has then
to be found between the time it takes and the precision wanted. Another parameter to take
into consideration for the time of the simulation is the amount of data taken out (taking out the
number of particles each turn, taking out only the position of the lost particles, both, etc.). So,
for other simulations we have to choose carefully the amount of particles we want, the number
of turns and the data we take out so that it doesn't take too much time.

3 The Distributions

The real space (x,y) and the phase spaces (x',y'), (x,x'), (y,y') particles distributions (x' = dx
ds and

y' = dy
ds ) also had to be studied. Some were already created in the Merlin Library and I plotted

them while Luke Dyks made a �Poincare Distribution� which will be explained in section �4.
There were some which we didn't use, such as the Horizontal Halo Distribution (a horizontal
line), but which were still useful to compare their codes and understand how they work. There
is also the Normal Distribution which represents well enough the proton beam (Gaussian) but
since we didn't intend to act on the core of the beam, we mostly used the HEL Halo Distribution
shown in �gure 6 as it would take less time. Working on the core beam would have made all
the simulations really slow so this one was without the core of the beam: only the halo was
populated. The limit of it is that we will eventually have to take it into account to check that
we do not indeed a�ect the core of the beam.

Figure 6: HEL Halo Distribution
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4 The Poincare Section

The Poincare distribution is a bunch of particles, not many, whose evolution is studied through
their trajectory. They are evenly dispatched on the transverse axis x with xε [0σ ; 10σ] as shown
in �gure 7. Here, there are 64 particles with a constant space between them in the (x,y) plane.

Figure 7: Poincare Distribution

The Poincare section will consist of plotting the (x, x') coordinates of the particles with
the Poincare distribution and it will tell about the behaviour of the beam. For example, we
can clearly see the di�erence between the stable and unstable orbits in the �gure 8, which is a
Poincare section with and without the HEL. The purpose of the Poincare section can also be
noticed by changing the radius (either the inner or the outer radius) of the HEL as shown in
�gure 9. The �islands� that can be seen are resonances (I did put a bit more details on it in
section �6)

(a) Without HEL (b) With HEL

Figure 8: Poincare sections with and without HEL

Figure 9: Poincare section for di�erent outer radii (7.53m, 8m, 9m and 10m) for the HEL
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5 The Beta Function

The beta function gives us the transverse amplitude of the particles throughout the accelerator.
As the particles oscillations �uctuate with the magnets, they will have the same variation rates
as of the lattice. It varies following the equation σ(s) =

√
ε.β(s), σ being the Gaussian width

and ε being the beam emittance (almost a constant). It evolves as the �gure 10 shows.

Figure 10: Beta function

6 The Tune

Another thing which needed to be analyzed was the tune. It is the frequency of the transverse
oscillation. Resonances occur when a particle is at the same point in phase space through each
turn; it may provoke huge oscillations and a�ect the beam core. Then, to avoid resonances,
the tune has to be neither integer nor semi-integer (ideally, it is an irrational non-fractional
number). Hence, when talking about the tune, only the decimals are given as the integer part
will not change anything. Also, the horizontal and the vertical tunes (respectively Qx and Qy)
have to be di�erent to avoid coupling resonances. The following resonance condition has to be
avoided: m·Qx + n·Qy = p (m, n, p being random integers and |m|+|n| being the order of the
resonance), which means it must not be where the lines cross on �gure 11 (where it is plotted
up to the twelfth order). I hence took the tune out of the code to check that they were indeed
di�erent and it was the case. However, for further studies, resonances may be induced to kick
the beam halo.

Figure 11: Full tune diagram and zoom on the injection and collision working point of the LHC
(graph from [3])
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7 Particle Tracking

I could also track the particles throughout the accelerator, using Merlin to take out their (x,y,z)
coordinates. It shows well how the particles behave and how big their oscillations may be. On
the following graphs, you can see the total tracking of 10 particles throughout the HL-LHC in
�gure 12 and a zoom in in �gure 13.

There are 8 slightly bigger �uctuations around the interaction points (IP); it is because before
the IP, magnets are used to provoke a big oscillation which will be used to make the beams from
the two pipes collide in a really precise point (the bigger the oscillation is, the more precise this
interaction point will be) which will be really useful for example for detectors such as Atlas or
Alice.

(a) Full trajectory in 2D (b) Trajectories in 3D (should be circular but would
not be readable)

Figure 12: Trajectories for 10 particles in the HL-LHC

Figure 13: Zoom of the trajectories around the CMS (IP5)
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Part II

Optimizing the HEL

8 The HEL kick

The force of the HEL on a proton is given by equation (1) (calculation in [1]), with ve (resp.
vp) the velocity of an electron (resp. of a proton), βeβp =

ve.vp
c² normal electron and proton

velocities, I the HEL current and q the electron charge.

F (r) =
Iq(1±βeβp)

2π.ε0.ve.r
(1)

The angular kick of the HEL is then given by equation (3) (calculation detailed in [1]) with r
the particle radius and (Bρ)p the beam rigidity. f(r) modulates the charge density and is given
by equation (2) with Rmin and Rmax being the radii of the HEL.

f(r) =


0 r < Rmin
r2−R2

min

R2
max−R2

min
Rmin < r < Rmax

1 Rmax < r

(2)

θkick(r) = f(r).
1

4πε0.c²

2LHELI(1 + βeβp)

(Bρ)p.βeβp

1

r
(3)

By removing the constants for a clearer vision, expressing the radii in σ units (r = a
√
βε) and

normalizing it with σx′ =
√
γε Luke Dyks simpli�ed equation (3) to equation (4)

θkick(σx′)α
I

ε
√
βγ

[
A2 −A2

min

A2
max −A2

min

]
(4)

Considering the maximum kick and that under certain conditions (β � α) γ = 1
β , we have

1
ε
√
βγ
∼ I

ε
√
β. 1β

and since ε is quite constant, we get equation (5) : the kick is approximately

proportional to the HEL current.

θkick(σx′)αI (5)

Moreover, by plotting the kick θkick(r) as in �gure 14, it is possible to see how it varies
depending on the position of the proton.

Figure 14: HEL kick depending on the position of the proton it a�ects (perfect model in red and
real one in blue)
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9 Tests over intrinsic parameters the HEL

9.1 Changing the radius

As shown in section �4, I tried to change the inner and outer radii of the HEL to check if the
behaviour was as expected and it was: if the radius is changed, the area that the HEL a�ects
changes as well; as shown in �gure 15.

Figure 15: Poincare section for di�erent inner radii (1.5m, 1.75m, 2m and 4m) for the HEL

9.2 Changing the current/length

I also tried to change the current of the HEL. It changes at a rate similar to the length of the
HEL so I also tried with unreasonable current values.

The ones displayed in �gure 16 are for 0m (no HEL), 3m, 15m and 30m which would approx-
imately be corresponding to 0A, 5A, 30A and 50A. I could have done more tests to have a more
precise correlation between length and current but that would not have been useful. The idea is
that the bigger it is (or the more current there is) the further the particles will be kicked in the
(x, x') space.

Figure 16: Poincare section for di�erent length (1.5m, 1.75m, 2m and 4m) for the HEL

9.3 Changing the energy

The last intrinsic parameter I could analyze was the energy (I also tried with unreasonable energy
values). As expected, the 0eV value is the same as without a HEL. The plot with 10 eV seems
false but it makes sense. Since some approximations have been made, the results are not true
anymore with small energies. Between 103eV, 104eV (not shown but similar) and 105eV, the
results are similar: the trajectory in phase space for the particles the closest to the core (x < 0.9
eV) is unchanged and the di�erences for the other particles stays small.

Figure 17: Poincare section for di�erent energy values (0eV, 10eV , 103eV and 105eV)

9



10 The Phase Advance

I also had to consider the phase of the di�erent elements, especially the phase advance between
the primary collimators and the HEL. At �rst, it could be thought that, depending on the phase,
more or less of the halo beam would be removed; as shown by the �gure 18. For example, here
the red phase is the ideal phase, the blue and dark ones are worse and the phase which would
be in anti-phase with the red one would be as good as the red because the collimator is also on
the opposite side.

Figure 18: Naive example of the e�ect of di�erent phase advances between the HEL and the
collimators

However, I did a lot of tests because we thought it was an important factor for the collimation.
Some of the results are shown in �gure 19. For each graph, I took di�erent positions where the
phases in x (respectively y) were approximately constant and y (respectively x) had di�erent
values. It didn't go as predicted at all. In fact, there is another factor which is much more
important with one HEL (which will be detailed in section �13).

Figure 19: Di�erent survival rates for di�erent phase advances in x and y

Position ∆φx ∆φy

9949 0.39 0.12
10321 0.39 0.12
10336 0.74 0.13
10467 0.49 0.17
10522 0.27 0.11
10681 0.98 0.20

(a) Similar phase advance in y
and di�erent in x

Position ∆φx ∆φy

9949 0.39 0.12
10151 0.19 0.0004
10257 0.12 0.27
10612 0.13 0.96
10385 0.13 0.57
10399 0.12 0.42
10416 0.12 0.27
10429 0.10 0.24
10597 0.13 0.03

(b) Similar phase advance in x
and di�erent in y

Table 1: Phase advance values corresponding to the positions in the survival rates
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The explanation is as follows: over the 20,000 turns, the phase of the HEL shifts bit by bit and
creates a sort of average, as shown in �gure 20. The �rst turn, the phase of the HEL corresponds
to the blue curve, the next turn it is the red one, afterwards it is the black one and so on and so
on. It would have been a problem if the machine tune was an integer or a half-integer but it is
not, in order to avoid resonances. However, the phase advance has to be kept in mind as it may
become important with 2 HEL.

Figure 20: Schematisation of the averaging over the turns of the phase advance

11 The di�erent modes

There are 4 ways to give current to the HEL. They are called operational modes (or just modes).
There is the DC mode which gives continuously the max current to the HEL, the Turnskip

mode which switches to DC every n turns (2 by default), the AC mode which gives a modulated
current (over time) and the Di�usive mode which gives either a randomly modulated current on
a turn by turn basis or switches randomly the HEL on and o�.

The 4 Poincare section are shown in �gure 21. It can already be seen that the 2 most e�cient
seems to be the AC and the di�usive mode.

Figure 21: Poincare section for di�erent modes (DC, Turnskip, AC and Di�usive) for the HEL

The fact that the two best modes were AC and Di�usive became obvious seeing the Survival
rates for the di�erent modes shown in �gure 22. The DC mode was just a bit better than no
HEL and the Di�usive mode may be harder to put in practice and could be damaging for the
components (by randomly switching the HEL from o� to max and then o� again). Considering
these and the fact that we have less control on the Di�usive mode than on the AC mode, we
chose to study the AC mode.

Figure 22: Survival rates for di�erent modes
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12 The AC mode

12.1 The HEL kick (AC mode)

The kick has now to be considered di�erently, as shown in equation (6) (cf [1]) where νop is the
AC tune given by the user, T the turn and m an integer.

θ = θ.
1

2
(1 + cos(m.T.2π.νop)) (6)

This is because of how the AC mode works: it attempts to be in resonance with the machine
tune. The consequence is that the kick is modulated (see calculus in [4]).

The two things we now had to test were the HEL current and its tune.

12.2 Changing the Current

With this parameter, the result was quite predictable. A higher current provokes a stronger kick
which will give a better collimation. The survival rates in �gure 23 show this very clearly.

Figure 23: Survival rates for di�erent currents

12.3 Changing the Tune

Now, an interesting parameter was to be considered: the tune. The AC tune is given by equa-
tion (7) (cf [1]) and is necessary to de�ne an harmonic frequency ϕ = m.T.2π.νop which is used
to modulate the AC kick. νmin is a set minimal tune, w is a step and δnu is the corresponding
tune step set by the user.

νop = νmin + w·δnu (7)

As told in section 12.1, for best results, the AC tune has to be the closest possible to the
accelerator tune. The accelerator tunes are Qx = 62.31 and Qy =60.32 so we had to match
them as much as possible to the AC tune. Since the default tune was 0.31, we tried the average
of Qx and Qy: 0.315. As the �gure 24 shows, the best kick is with the average of Qx and Qy.
However, when Luke Dyks did plot the survival rates for some other tunes and checked them,
we discovered that the best value wasn't the average 0.315 but the value 0.3125 as shown in
�gure 25.

Figure 24: Poincare Sections for di�erent tunes
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Figure 25: Survival rates for di�erent tunes

13 The shape of the beam

I then looked at the shape of the beam. In order to do this, I chose either βx
βy

or
βy
βx

(they have

to be superior to 1) because I didn't want to focus on an axis in particular but on the overall
shape. Whether the beam was thinner in x or in y was the same. It gave me access to the shape
of the beam since β is proportional to the width of the beam. The plots I did, as in �gure 26
for example, con�rms well that the collimation rate for 1 HEL depends mostly on the shape of
the beam. The proton beam has to match the shape of the HEL to be optimized: it has to be a
round beam.

Figure 26: Di�erent survival rates depending of the shape on the beam
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Part III

Adding a second HEL

14 Finding spots for the 2nd HEL

The �rst step to add another HEL is to �nd where to put it. I also did have to choose spots
in the accelerator for a single HEL to see the in�uence of di�erent parameters and a constraint
was to �nd drift parts (i.e. places with free space in the accelerator) but for the second HEL, I
wanted to look at it more precisely. I had to take into account that the spot had to be a drift
part, a cold one (the HEL need superconducting magnets), that it had to have a length of more
than 3m and that the beta function had to be small enough. Small enough �rst meant less than
1.05 but since there were only 2 possible spots (18 when only taking into account the drift parts,
2 in the end because some were in the detection parts), I changed it to 1.2 where I had 6 (or 30
unrealistic) possible spots. The code to take those spots (table 2) out of the lattice is displayed
in the section �18.3.

Position Ratio βx
βy

(or
βy
βx

) βx βx Position near to

6487 1.0822 132.566 143.465 IP3: Momentum Cleaning (6,664)
6923.2 1.1625 84.0309 72.2838 IP3: Momentum Cleaning (6,664)
9853 1.0816 349.609 323.219 IP4: RF (9,997)
9981 1.15379 192.051 221.587 IP4: RF (9,997)
19891 1.0783 156.912 169.199 IP7: Betatron cleaning (19,994)
19986 1.08814 141.19 129.753 IP7: Betatron cleaning (19,994)

Table 2: Possible positions for a second HEL

15 Modifying and testing the code

We then had to add the HEL in the code. The changes weren't so big in the beginning but a
good understanding of how they were implemented was necessary. I �rst added the HEL with
the same parameters as the �rst one and then Luke Dyks added the possibility to put speci�c
parameters.

Figure 27: Example of some code changes to add a second HEL

There are di�erent ways of testing the behaviour of the second HEL. We can put the �rst one
on and the second one o� and vice-versa or put the second one where the �rst one was. We could
also only turn the �rst one on with a certain current and compare it with the results from both
at the same time with half the current. In all those tests, the HEL are at the same spot (which
was doable because in the code the length is considered to be 0m even if its e�ective length is
3m). An example of one of those tests is �gure 28 done by Luke Dyks. We have 4 curves: the
�rst HEL at 5A and the other one at 0A, the same parameters but the other way around, both
at 2.5A and the �rst HEL at 5A (a result we had from before we added the second one). Since
they were all the same (the small di�erences are due to a di�erent seed for a random number
generation), our simulations were behaving coherently.
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Figure 28: Example of a test for di�erent settings

16 Compensation of the non-round beam shape

We have seen that for one HEL, the most important setting is not the phase advance but the
shape of the beam. However, with the addition of a second HEL, we could now do a test: take
a non-round beam position and clean the x part with one HEL and the y part with the other.
As shown in �gure 29, it is important to notice that it can go at least up to a collimation rate of
0.6 if the tune is well matched (we may probably even go further).

Figure 29: Tests for di�erent tunes for each HEL. ν1 (resp. ν2) is the tune of the �rst HEL (resp.
the second one)

Seeing this result, it had to be compared with the result for one HEL at a nearly round
position. As the �gure 30 shows, with two HEL, one acting on x and the other acting on y in
a non-round beam position, we can have a better collimation than with one HEL acting on a
round position. The restriction on the round position for the HEL may be lifted. But we will
now have to consider the current: is it as good with a current halved on each HEL ? We could
also probably increase the collimation even more using round positions.

Figure 30: Survival rates for di�erent HEL settings
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17 Comparison of 2 HEL in a round beam position

While Luke Dyks was working on non-round positions, I was working on the round ones that I
selected in section �14. I used the previous spot for the �rst HEL (9964m) and the ones displayed
in �gure 31 for the second HEL. There are here two phase advances between the HEL to consider:
the one between HEL1 and HEL2 (phase advance 1-2 in the table) and the one from HEL2 to the
accelerator end added to the one from the beginning of the accelerator to HEL1 (phase advance
1-2 in the table). It is the other way around if HEL2 is closer to the beginning of the accelerator
than HEL1. However these curves don't seem to evolve according to any parameter I have listed
in table 3: neither the shape nor the di�erent phase advances or any other parameters that I
tried. I even tried to check the distributions shape as shown in �gure 32 but it didn't evolve
accordingly. The 4 best collimation rates didn't have the roundest shape and none of the phase
advances did vary in the same way either. I also tried to look at the value of the Beta function
but it didn't �t either.

Figure 31: Di�erent survival rates for the �rst HEL at 9964 and the second one at s (in the
graphic)

Position �Collimation ranking� ratio βx
βy

(or
βy
βx
) Phase advance 1-2 Phase advance 2-1

3589 7 1.01 0.29 0.66
6487 6 1.28 0.15 0.5
19891 5 1.07 0.32 0.19
6923 4 1.16 0.20 0.52
9981 3 1.15 0.14 0.13
9853 2 1.08 0.55 0.81
19896 1 1.08 0.25 0.38

Table 3: Speci�cations of the curves in �gure 31

Figure 32: The distributions for the di�erent positions in the phase spaces (x, y), (x, x'), (y, y')
and (x', y')
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Conclusion

We found out that we can change many parameters such as the length, the current or the
energy and that the collimation will globally be better. The limit here is a technological limit:
we probably won't have more than 5A, the length is very limited by other components in the
LHC and it needs cold parts which makes it even more restrictive. However, we can improve
the collimation by changing settings in the AC mode (changing the tune can give a better
collimation), we have also seen that if we take a spot where the beam is round, the collimation
will be better than in a less round spot. We have looked at this for 2 HEL and the beam shape
which was the most important parameter for one HEL seemed to be less important with two
because we have the possibility of compensating it by acting �rst on one of the transverse axis
and then on the other one. Thus, it would be interesting to study how we could optimize the
use of the two HEL even more. Also, the phase advance may be more important than before:
we may put both HEL in resonance to try to improve the collimation (to see if this may work,
we may try in a �rst place to cancel out the other HEL); this is an interesting parameter that
we will have to look at.

Also, another research that could be done is on the limits of the di�usive mode, if it is possible
to optimize it and to see if this mode would be safe for the components (because it is a random
switch from o� to max current) or if it would damage them.
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Appendix

18 Di�erent codes

18.1 To track particles

This code is an example of a code which was used to take out the position of a certain number
of particles npart at each step of their trajectories throughout the accelerator. In order to do
this, I used an array of arrays: the coordinates in s, x and y. The 3D version is similar but a bit
longer.

Figure 33: Code taking the coordinates of npart particles and plotting their trajectories in the
accelerator

18.2 To simplify the change of parameters

Here are some parts of typical code necessary to be able to change settings (for example the AC
tune) without having to re-build the code. To do this we used a �le �.merlin�.

(a) Command to take the value of a setting in �.merlin� �le(b) Allows to change mode from another �le so we don't have
to re-build the code

Figure 34: Parts of coding made to input parameters more easily
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18.3 To �nd second HEL positions

This is a code I used to �nd some possible positions for the second HEL used in section �14. All
the �if� commands are used for the restrictive conditions, for example it has to be in a drift part
of at least 3m and the ratio βx

βy
(or

βy
βx

) has to be lower than 1.2.

Figure 35: Code going through the whole lattice and taking some parameters into account to
select a second position for the HEL
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