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Abstract

A quasi two-dimensional thermal is studied here. A thermal is a suddenly released buoyant
cloud. Quasi-two-dimensional means that its movement is restricted on two axes by using
a cuboid tank with one of the three characteristic lengths far smaller than the two others.
It was studied both theoretically and experimentally. The evolution in a laminar �ow at
Re < 500 and in a turbulent �ow Re > 2000 were considered and their growth was expected
to respectively follow laws in t2 and as t

2
3 . As the laminar �ow has a behavior similar to

the three-dimensional case, the turbulent �ow was further examined. Its expansion proved
drastically di�erent than the non-restricted motion in which a mushroom shape is created.
Indeed, in the quasi-two-dimensional case, the thermal splits into two main branches which
in turn split into two other branches. Then, this pattern reiterates itself while slowing down.
The theoretical model describing the height and the speed of these thermals is thought to be
quite accurate as most errors were induced by the way the experiments were conducted. By
comparing the expected evolution of the height and of the speed of the center of mass of the
thermal, it was computed that the relative error was only of 10%. These models, respectively
in t

2
3 and t

−1
3 , corresponded roughly to the experimental results. Nonetheless, further analysis

should be undertaken as it is possible to improve the precision on the release of the thermal,
the experiments and the code used to analyse them.
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Part I

Introduction

1 Physics of thermals

De�nition of a thermal The two main parameters in�uencing �uids moving through one another are mo-
mentum and buoyancy. If a phenomenon is purely momentum driven, it will be denoted as a jet and if it is
buoyancy driven, it will be called a plume. However, there can be several variations to these. For example,
fountains are a combination of buoyancy and momentum. It may also vary depending on whether they are
continuously supplied or not. Here, the phenomena studied are thermals, also called thermal plumes as they are
a speci�c type of plume. A plume is continuously supplied whereas a thermal consists of a suddenly released
buoyant cloud. They are often made of the same �uid as the ambient and the buoyancy force will be generated
from a di�erence in temperature, hence the name thermal.

Origin of the study For the last decades and since the second World War with the entrainment assumption
made by G. Taylor, the study of plumes has been increasingly considered. This assumption states that for a
turbulent �ow, the created eddies will entrain the surrounding �uid with a velocity proportional to a charac-
teristic speed of the thermal. Taylor made this assumption by studying hot gases rising in air as plumes are
phenomena that can be found in many places, as much underwater as in the air.

Importance of thermals Many plumes can be found in the actual world such as the steam from industries,
oil burning or vent ori�ces in the ocean and they have huge consequences on the atmosphere of the earth. For
example, the gases released by many industries strongly in�uence the air pollution. Their evolution can be
studied through plumes or thermals to optimize their release and avoid their propagation in urban areas.

Thermals are crucial as they govern the evolution of mushroom clouds coming from explosions, nuclear ones
for example, on earth or even on the sun. This can be useful in astrophysics but also in topical issues such as
the environment or global warming which are causes for heated debates around the world. Thermals can be
analyzed in some major cities called Urban Heat Islands (UHI) as they di�er sharply from their surrounding in
temperature [22]. For example, London is generally between 3°C and 9°C higher than its neighboring counties
as Chandler (1967)[2] and Davies (2007)[4] studied. The air rising from these cities, often heavily polluted, is a
thermal.

Here, the study focused on the in�uence of the con�nement on thermals. An example of this would be an
explosion con�ned between two walls. The aim of this project was to study this parameter more precisely.

2 Literature Review

As a consequence to the entrainment assumption conceptualized by Taylor, plumes and jets became more
studied. The interest mainly rose from the paper written by Morton, Taylor & Turner (1955)[15] which derived
the 3D governing equations for jet and plumes from the conservation of momentum, volume and buoyancy. They
found that the volume was evolving in t

3
2 and the vertical velocity in t−

1
2 . In this paper, they also developed a

way to compute the constant of proportionality a from the entrainment assumption for continuous and instant
sources and applied it to the atmosphere. Rouse, Yih & Humphreys (1952)[17] and Lee & Emmons (1961)[12]
later applied it for thermals from heat sources and computed out values of 0.156 and 0.16 as summarized by
Yuan & Cox (1995)[29].

Furthermore, in the governing equations derived by Morton, Taylor & Turner (1955)[15], it is computed
that the thermal should expand proportionally with height. Scorer (1957)[20] veri�ed that it was true through
experiments in which he was rotating a copper cup containing the thermal at the water level to release it. He
attested to the veracity of this and compared his results to two measurements taken in nature from Malkus &
Scorer (1955)[14] and from Ludlam & Saunders (1956)[10]. Both measurements agreed with his expectations
within a reasonable error margin. Later, Sanchez (1989)[19] also con�rmed this conclusion through more precise
laboratory experiments.

In his experiments, Scorer (1957)[20] also supposed that the ratio between the expansion and the height of the
thermal was independent of the Reynolds number. Gri�ths (1985)[7] did an experiment using heated oil released
in a large tank of the same oil to try to attest this hypothesis. It con�rmed it and Turner (1963)[24] broadened
the result from a neutral surrounding to a case with an increasing buoyancy. Later on, Turner (1964)[25] also
developed the equations for the velocity and the density variation governing an expanding thermal.

Also, as many results are based on an argument of self-similarity, Turner (1969)[26] studied this assertion
comparing it to experiments from the ones of Richards (1963)[18] and Scorer (1957 & 1958)[20, 21] and con�rmed
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that it seemed reasonable. Gri�ths (1985)[7] con�rmed the self-similarity solution again for the viscous case.
Recently, Sanchez (1989) [19] partially solved a consequent problem concerning the creation of a thermal in

a laboratory. The problem was that most thermals created in laboratory were released with momentum. He
reduced this induced momentum by injecting the thermal in oil with a pipette. The experiments became more
precise and he found that the entrainment constant for thermals was smaller than previous expectations.

Finally, as Turner (1969)[26] detailed, for this kind of turbulent �ows, if the Reynolds number is large enough,
it does not explicitly in�uence the overall evolution of the thermal and the lab results can then be applied to
larger scales. Thus, the laboratory thermals can be used to study clouds formations or volcanoes as it was done
for the Bezymianny volcanic eruption in 1956 by Gorshkov (1959)[6], one of the biggest natural thermals on
earth. Noh (1992)[16] also used this to study the motion of the �uid in leads in polar oceans. Again, as the
experiments can hardly be done where the phenomenon occurs, he did the experiments in a lab in a complex
apparatus which he could extend to the real life case.

3 Objectives

Since the derivation of the motion equations from Morton, Taylor & Turner (1955)[15], the topic has not evolved
much except concerning the precision of the various constants considered. Most works from these past decades
only consisted in trying to either con�rm or deny the theory proposed. Many experiments were done for this
purpose and even if the outlines are very useful, these results are limited to the three-dimensional case with
in�nite boundaries. For occurrences such as vent ori�ces in the ocean where the thermal is restrained by walls,
the equations have to be modi�ed. Con�ned thermals can be typically found in human constructions such as
gases created in power-plants or clouds from explosions in restricted spaces such as kitchens or buildings. They
are also found in nature with, for example, volcanoes. When an explosive eruption occurs in a volcano, all the
magma contained in the magma chamber (where the pressure builds up) is released and its evolution is con�ned
by the conduit of the volcano. Consequently, this should be considered as a con�ned thermal to be properly
studied and not as a thermal with in�nite boundaries, but the number of people who studied this theory is not
substantial. Some studies on the e�ect of quasi-two-dimensional restriction have been done as for example by
Landel (2011)[9] who studied its impact on the structure of jets. As theoretical studies have never been done
for quasi-2D thermals, it led this research in the direction of the said con�nement. The aim of this research was
to have a precise idea of the occurring phenomenon and the equations describing it.

4 Outline

The key point of this study is that it was supposed that the governing equation for the three-dimensional case
of the thermal would not be true anymore. To address this supposition, a setup detailed in part II was used
to try to create thermals. Also, in the same section are presented the qualitative and quantitative experiments
that were conducted. Following these, a theory was built up as explained in part III to study the behavior of
thermals in a quasi-2D environment. Finally, the results were precisely analyzed and discussed in part IV by
using a code to output di�erent parameters from the experiments and compare them to the theoretical model.
To conclude, improvements that could be included in the apparatus or the experiments were presented.

Part II

Experimental setup

1 Presentation of the apparatus

To create a quasi-two-dimensional (quasi-2D) thermal, one of the three characteristic length describing the
cuboid tank was made negligible compared to the other two. This way, the movement of the �uid would mainly
be restricted on two axes. Thus, the core of the experiments was a tank of 1 m × 1 m × 0.01 m comprised of
two Perspexr sheets 1cm apart and hermetically bound together. A pipe had to be connected to the bottom
of the tank and to a bucket �lled with clear water to �ll the tank. The clear water was the ambient �uid for
the experiment and the thermal was released from the top of the tank as represented in �gure 1a. White pieces
of paper were taped behind the tank such that the experiment inside it could be isolated from the background
as shown in �gure 1b. To record the videos, an iPodr was used with a resolution of 1080 pixels × 1920 pixels
and a frame-rate of 29.9700 frames per second.
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(a) Schema of the principle of the apparatus (b) Picture of the real apparatus

Figure 1: Schema and corresponding picture of the apparatus

2 Experimental procedure

2.1 Preparation

The medium used for the experiments was clear cold tap water. Since the thermal and its surrounding should
have only one parameter changing, the thermal was also made of water. Dye was used in order to distinguish
it from the medium and salt was added in the thermal to have a di�erence in density and therefore a buoyancy
force.

To have proper sets of experiments (i.e. with the same thermal density), a volume Vl of thermal was produced
in a beaker. The initial density of the thermal was given by equation (1). In this equation, ms is the mass of
salt added and Vl is the total volume of the solution. By taking ms = 5 g and Vl = 500 cm3, the initial density
of the thermal was ρt,0 = 1.01 g.cm−3.

ρt,0 =

(
1 +

ms

Vl

)
. (1)

For each experiment, the tank was �lled with water through the pump. As the pump induced some motion
in the injected �uid, it was necessary for the motion to settle down, so after being �lled, the tank was left
untouched for more than 10 minutes. Eventually, an appropriate volume of thermal was extracted from the
beaker with a pipette and released with a speci�c method from the top of the tank.

2.2 Restriction on the production of a thermal

At �rst, many ideas were tried to create a satisfying thermal, but due to di�erent limitations such as the small
width of the tank or the necessity to have no momentum, they took a lot of time and were mostly unsuccessful.
Some of them are presented here. Furthermore, several tests were done to study the e�ect of certain constrains
on the release and the evolution of the thermal. It was done to get a proper idea of which parameters could be
neglected or not when releasing it. An example would be the distance from the water at which the thermal was
released.

2.3 In�uence of salt

The in�uence of salt was also tested by comparing 2 thermals released side by side at the same time. The result
after some time was obvious as demonstrated in �gure 2. The sample without salt was not moving much and
the one with salt was signi�cantly faster. Salt was hence used in the experiments because if the thermals were
not fast enough, the buoyancy would not necessarily be the main e�ect anymore as molecular di�usion could
also occur. It was also important to have a thermal with a high enough speed as detailed in �2.1.4 of part IV.
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Figure 2: Di�erence of speed for two thermals with and without salt

2.4 Methods to create a thermal

Pipes The �rst satisfying way I found to produce a thermal was to submerge a part of a cylindrical pipe in
the beaker and to block its extremity. This way, air was blocked in the pipe and the �uid did not leak out when
removed from the solution. The amount of �uid obtained with this method could change depending on the
length of the pipe submerged but it was limited to small volumes (i.e. V < 2 mL). If bigger pipes were used,
the �uid became too heavy to be kept through pressure only. Nonetheless, when testing this method in 3D, it
was con�rmed that it was satisfying as a vortex ring was created, as expected from previous models.

Metal strips and oil For thermals with 2 mL < V < 6 mL, I came up with a technique which used two
previous methods. These two ideas were to use oil and two metal strips of dimension 100 mm × 9.70 mm ×
1.95 mm coupled together as shown in �gure 3b. Thanks to the metal strips, the thermal could be blocked over
the oil layer. Afterwards, by releasing it, it was slowed down and thus closer to the desired rest position. This
technique was the most accurate and was used for most experiments.

Triangular device To produce thermals with 5 mL < V < 20 mL, I thought of using a hollow triangular
device presented in �gure 3a. Its shape was not important as its main purpose was to create big thermals. The
principle was similar to the one in the paper of Scorer (1957)[20] who used a copper cup which he rotated. In
his paper, he justi�es that �the cup was turned over quickly by hand, and a negligible amount of motion was
produced thereby�. Some momentum was still introduced this way but it was considered negligible.

(a) Triangular object with which the ther-
mals were released

(b) Two metal strips containing a thermal in oil. It was leak-
proof when on closed position

Figure 3: Final methods used to release the thermals
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3 The Experiments

As not much time was available, the �rst experiments detailed in the section A of the appendix were qualitative
and not done with a high accuracy. They were done to understand the behavior of a thermal under di�erent
conditions and to �nd a proper way of releasing it. In the following tables, the expansion of a quasi-2D turbulent
thermal is mentioned. It describes a process in which the thermal splits into two branches which split again
into smaller branches and so on.

The �rst experiment presented in table 1 was done in order to check if the medium was big enough to be
considered quasi-in�nite and if there was any back-�ow occurring on the thermal. Lines of dye were produced
in the tank using �uorescein: small red aggregates were dropped at the top of the tank and sunk to its bottom
leaving yellowish lines on their path. The tank was immobile and the �uid in it at rest. The lines were
consequently almost completely still in the tank. By then releasing the thermal and looking at the evolution of
the �uorescent lines, it was possible to see to what extent it was interacting with the �uid through these lines.
Furthermore, if the lines moved closer to the thermal, it meant that there was a back-�ow occurring and that
it was possibly interacting with the thermal (what had to be avoided).

The second experiments summarized in table 2 were the core of the projects. These are thermals produced
using two metal strips immersed in oil. By rotating the strips, the thermal was released and slowed down by
the oil. The volumes used for this were varying between 2 mL and 3.5 mL and the proportions of salt were
either 0.04 % or 2 %.

Goal Release method Details
Salt

percentage
(mass)

Volume of
thermal

Result

Determine if the
tank can be
considered

quasi-in�nite.

Two metal strips
immersed in oil.
Rotating them a
little released the

thermal.

Fluorescein was
used to create lines
of colored dye in

the tank.

2 % 3.5 mL

The lines of dye on
the furthest sides
of the tank did not

move.

Table 1: Experiment on the quasi-in�nity (in both directions) of the tank in the y-axis.

Goal Release method Details
Salt

percentage
(mass)

Volume of
thermal

Result

Analyze
quantitatively a
thermal to
compare it with
the model: set 1

Two metal strips
immersed in oil.
Rotating them a
little released the
thermal.

Number of
experiments: 1

0.4 % 1 mL

The resulting
thermal is too
small to be
analyzed.

Number of
experiments: 7

0.4 % 2 mL

The thermal falls
straight for a small
time and then
expands as a
turbulent quasi-2D
thermal

Analyze
quantitatively a
thermal to
compare it with
the model: set 2

The same method
as previously was
used.

Number of
experiments: 4

0.4 % 3 mL
Same result as
previously

Number of
experiments: 4

2 % 3 mL
Same result as
previously

Analyze
quantitatively a

thermal to
compare it with
the model: set 3

The same method
as previously was

used.

Number of
experiments: 14

0.4 % 3.5 mL
Same result as
previously

Table 2: Quantitative experiments of thermals using two rectangular strips and oil.
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Part III

Theory

1 Key physical parameters

1.1 Assumptions

Incompressible �uid Some assumptions were necessary to deduce the movement equations and the �rst
assumption was that the �ow is incompressible. It is a common and reasonable assumption as the �uid considered
was water which is almost incompressible. Since there was no strong pressure variation in the water for the
experiments, this approximation did not induce errors in the calculation.

Boussinesq approximation The Boussinesq approximation had to be used to simplify the equations in the
calculations. It is used in buoyancy driven �ow and allows to neglect the density variation in time in a system,
except when the density is multiplied by the gravitational acceleration g. When applying Newton's second law,
it allowed to remove the density from the time derivative. As there was no gravity in the di�erential, the density
of the thermal could be considered constant and removed from the time derivative. This approximation could
not be applied if there was a big di�erence of density between the thermal and the ambient as it is the case for
many phenomena, as for example volcano eruptions (the air density is 1.225 kg.m−3 and the density of volcano
dust varies from 700 kg.m−3 to 3200 kg.m−3 [28]). For the experiments led here, this di�erence was small so
this approximation could be applied.

Entrainment assumption The entrainment assumption states that the velocity of the �uid entrained by
eddies in a turbulent thermal at any height is proportional to its characteristic velocity. The characteristic
velocity chosen can be either the mean velocity at the head of the thermal or the time averaged maximum
velocity [27]. The assumption ue = αw was used in the calculus when applying the conservation of the volume.
For a thermal plume, the value of α is typically 0.117 < α < 0.199 [29].

Quasi in�nite medium Another approximation made was that the medium is quasi in�nite. It means that
the walls did not modify the motion of the thermal. For this purpose, I thought about doing a test to see if
this was indeed true. By putting dyed lines in the tank as explained in section �3 of part II, the typical amount
of �uid in�uenced by the evolution of the thermal could be determined. More importantly, the back-�ow on
the thermal could be evaluated. As expected, the thermal was only in�uencing a small area and there was no
back-�ow so this approximation was reasonable.

Di�usion process The fact that the molecular di�usion of salt and dye was negligible compared to the
turbulent di�usion was checked. Indeed, the time it would have taken for the salt or the dye to spread in the
tank was 8000 days for molecular di�usion whereas it was only 10 minutes for turbulent di�usion. Hence, the
main cause of propagation was turbulent di�usion [3, 5, 13].

1.2 Di�erent �ow regimes: the Reynolds number

For di�erent �uid �ows, an important value that has to be considered is the Reynolds number described in
equation (2). In this equation, w is the speed of the �uid, L a characteristic length, ρ the density of the �uid,
µ the dynamic viscosity and υ = µ

ρ the kinematic viscosity. The Reynolds number is the ratio between the
inertial and the viscous forces, a dimensionless value which depicts the kind of �ow studied. Depending on
the �uid considered, the transition value between a laminar �ow and a turbulent �ow may change a bit but in
overall, when the Reynolds number is small, the �ow is laminar and when it is big, the �ow is turbulent. In the
experiments made for this project, the laminar-turbulent transition is typically of the order of Re ∼ 2000.

Re =
ρwL

µ
=
wL

υ
. (2)

The characteristic speed of a thermal in our experiments was w ∼ 10−2 m.s−1 and the kinematic viscosity
of water is υ ∼ 10−6 m2.s−1. However, the typical length is a bit more complex. During the experiment, the
thermal starts with a length L ∼ 5 × 10−2 m or smaller but it expands with time and reaches dimensions
greater than L ∼ 20× 10−2 m. Also, it simultaneously expands and splits into smaller thermals which in turn
expand and split again into smaller branches. Considering the thermal as a whole or not will change greatly
the Reynolds number. If analyzed as a single system, after some time the thermal has Re > 2000. Nonetheless,
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if the beginning of the experiment or if a single branch is studied, the value becomes Re ∼ 500 or less. There
should thus be both laminar and turbulent behavior in the experiment. Hence, both �ow patterns were studied.

1.3 De�nition of the variables

The Cartesian coordinates (x,y,z) are used. The origin is the top left of the tank with the x-axis being per-
pendicular to the Perspexr sheets, the y-axis along them and the z-axis going downward. Here the most used
axis is the z-axis as it will characterize the height of the thermal. It is important to note that the x and y axis
de�ned here do not correspond to the x and y in the code part IV.

Here, di�erent parameters are taken into consideration. The thermal does not have a constant de�ned shape
through time so it is de�ned when it is released as a volume V . In the same way, the area which is in contact
with the side of the tank is denoted as Ac and the other area on which the entrainment can occur as Ae.
Finally, the width of the tank is l. If the thermal is considered cylindrical with a radius r and a length l at the
beginning, considering that the experiments are in quasi-2D, its volume is V = Acl = πr2l and the entrained
area Ae = 2πrl. However, as the thermal will not be a perfect cylinder at the beginning, r is taken as the
�maximal radius� and variables are introduced to de�ne its shape. Hence, with a ≤ π and p ≤ 2π, equation (3)
and equation (4) are obtained.

V = ar2l, (3)

Ae = prl. (4)

1.4 The initial conditions

To integrate the equations obtained later on, initial conditions are needed. They are the initial velocity, the
initial radius and the initial time at which the thermal is released. In order to handle them, a virtual origin is
created. The thermal is considered to be released in the experiment at a time t1 with a radius r1 and a velocity
w1. The diameter of the thermal is expected to grow linearly. It thus seems reasonable to say that at t → 0
the radius r → 0. Most papers even assume that r = 0 at t = 0. However, the consideration of the speed at
t = 0 is often omitted in papers as the expected value induces a problem. In the calculations, an integrated

quantity is
d(r2(t)w(t))

dt . Then, the initial condition r2(t = 0)w(t = 0) is needed. Since it was considered that
r(t = 0) = 0, if w(t = 0) = w0 with w0 ∈ R, r2(t = 0)w(t = 0) = 0. That is the assumption usually made
for this calculation. Nonetheless, by doing this approximation, the variation of the speed obtained with the
calculations is w(t) ∝ t−

1
n , n = 3 for quasi-2D and n = 2 for 3D. There is consequently a singularity at t = 0.

As t → 0+ the speed t → ∞ /∈ R. As a matter of fact, if w0 ∈ R, it cannot be stated mathematically that
r2(t = 0)w(t = 0) = 0 as it was surreptitiously supposed in some past papers. However, another assumption can
be made. As stated earlier, at the beginning of the experiment, the thermal can be considered laminar. As its
radius is small, the Reynolds number corresponds to a laminar �ow. Subsequently, the thermal �rstly evolves
with a laminar motion and then only with a turbulent motion. Since for the laminar case w(t)′ = g′t+w0, the
approximation that r2(t = 0)w(t = 0) = 0 can be used.

2 Governing equations

2.1 Buoyancy parameter

In these experiments, a reduced gravity is de�ned. It is the equivalent of the gravity that the thermal experiments

through its evolution: g′ =
(
ρt−ρa
ρa

)
g. The variable ρt is the density of the thermal and ρa the density of the

ambient �uid. The latter is considered to be constant as the amount of water in the tank is far larger than the
density of the thermal ( 10 L � 5 mL). Furthermore, the tank is considered quasi-in�nite, so the quantity of
water can also be considered quasi-in�nite for these experiments.

After a certain amount of time, as some of the ambient �uid has been entrained and mixed with the thermal,
it has a di�erent volume and a changed reduced gravity: g′′.V ′. This entrainment leads to a change of V to

V ′ = xV and a change of density: ρ′t =
ρt+(x−1)ρa

x . Then g′ becomes g′′ =
(
ρ′t−ρa
ρa

)
=

((
ρt+(x−1)ρa

x

)
−ρa

ρa

)
g = g′

x .

As a result, equation (5) is obtained, B being a constant called the buoyancy parameter.

g′′.V ′ = g′V = B. (5)
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2.2 Volume conservation

The second equation comes from the fact that the di�erential volume change of the thermal corresponds to the
expansion over time of the area through which the �uid is entrained. This area is Ae as de�ned earlier, and by
denoting ue the entrainment rate, the equation is given by dV

dt = Aeue.
Substituting the volume V = ar2l, the entrained area Ae = prl and using the entrainment assumption

ue = αw, the equation develops into al dr
2

dt = plrαw. As a and l are constants in time, they can be removed

from the time derivative. Also, dr2

dt = 2r drdt so by substituting and simplifying by 2r, the equation can be
reduced to equation (6).

dr(t)

dt
=
pα

2a
w(t). (6)

2.3 Newton's second law

From Newton's second law, the derivative of the momentum is equal to the sum of the forces. Here, the
momentum is ρV w and the forces acting on it are the buoyancy and the gravity. However, with the reduced
gravity, the thermal can be considered as a falling object with the gravitational force given by the reduced gravity.
Subsequently, the forces acting on the body can be reduced as ρtV g

′ = ρtB. The frictional forces on the two

areas Ac have been ignored here as explained earlier, so Newton's second law develops into d(ρtV w(t))
dt = ρtB.

Since the Boussinesq approximation is made, ρt can be removed from the time derivative (as it is not
multiplied by g) and be simpli�ed with the density on the right-hand side of the equation.

Also, since V = ar2l (a and l constants), by dividing both sides by al, the equation can be rewritten as
d(r2(t)w(t))

dt = B
al

Finally, by integrating, using the initial conditions detailed in section �1.4 and dividing by r2(t), the equation
is simpli�ed to equation (7)

w(t) =
B

al

1

r2(t)
t. (7)

2.4 Consideration of friction

2.4.1 Equation of friction

In the model, friction should also be considered. Since the experiments are restrained to a quasi-2D case, there

is going to be friction at the walls of the tank using the Darcy-Weisbach equation ∆p
L = fD

ρ
2
〈w〉2
D [1] with w as

the mean-�ow velocity, ρ the density, p the pressure and L a typical length. By adapting the hydraulic diameter
which describes the constraints from the tank on the �uid and the Darcy friction factor, I could compute a

precise formula for the frictional force. The hydraulic diameter is D = 4
(
prl
2pr

)
= 2l and for a Reynolds number

Re ∼ 2000 , the friction factor is f ∼ 0.0791
Re4 . By then considering that the force induced by friction was

Ff = p.Ac, I could derive equation (8).

Ff =

(
4
0.0791

R0.25
e

)(
ρL

2

)(
〈v〉2

2l

)
2ar2 = 0.0791

(
L

l

)(
2a

R0.25
e

)
ρ 〈v〉2 r2. (8)

However, by adding this in Newton's second equation, the system became unsolvable. Hence, a study
comparing the order of magnitude of the di�erent forces applied in Newton's second equation was done.
d(ρV w(t))

dt = ρV g′ − Ff with Ff still being the frictional force.

2.4.2 Comparison of the order of magnitude

The buoyancy force The buoyancy term is ρtV g
′ = ρtV

(
ρt−ρa
ρa

)
g as explained in more detail in section

�2.3. Substituting the density with equation (1) (here ρa = ρl ), the buoyancy force is approximately given by
equation (9). This is an approximation since the density considered is the one at the beginning, but it didn't
vary much throughout the experiment.

ρt,0V g
′ =

(
1 +

ms

Vl

)
V


(
1 + ms

Vl

)
− ρl

ρl

 g. (9)

By taking the values ms = 1 g, Vl = 500 cm3, ρl = 1 g.cm3 and V = 1 cm3 the buoyancy force isρtV g
′ =

3.96× 10−4 N.
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A lower concentration of salt (i.e. a lower density of thermal) and a low volume were used in this calculation
so that the result is lower than the ones for the experiments. This way, if it is found that Ff � ρtV g

′ it means
that the frictional term can be neglected with a comfortable margin.

The frictional force From Khan (2015) [8], the frictional force and the shear stress are correlated byτ =

f
(
ρ〈v〉2

2

)
. As the shear stress has the unit of a force per unit area, the frictional force is given by multiplying the

shear stress by the area of contact between the thermal and the tank 2Ac = 2πr2 de�ned earlier. Considering
that the volume is V = πr2l, the relation r2 = V

πl is obtained and then equation (10).

Ff = fρt,0 〈v〉2
V

l
. (10)

The speed of the thermal is taken as an upper boundary. Then, if the inequality Ff � ρtV g
′ is still veri�ed,

it means that it is true for slower speeds. As it took more than a minute for the thermal to reach the bottom of
the tank (1m), the upper value 〈v〉 ∼ 1

60 m.s−1 was taken. With f ∼ 0.007, (from Landel (2011) [9] who used
the same apparatus), a volume of 5 mL = 5 cm3 and the same values as in the last paragraph for the other
variables, the frictional force obtained is Ff = 9.82× 10−9 N.

2.4.3 Conclusion on the frictional force

Even though the radius of the thermal will change over time, it is possible to not take it into account as both
the friction and the buoyancy are in r2: their ratio is going to be independent in r as they will cancel each
other out. Finally, having 9.82× 10−9 N � 3.96× 10−4 N, the conclusion that Ff � ρtV g

′ can be made. The
frictional terms in the equations can thus be neglected.

3 Solutions for the two regimes

3.1 Turbulent theory in quasi-2D

By substituting equation (7) in equation (6), the equation
� t

0
r²(t)dr(t)dt .dt =

� t
0
αpB
2a2l t.dt is obtained. Integrating

and taking the cubed root, it becomes equation (11) with r(t = 0) = 0.
The equation (11) can then be substituted in equation (7) to develop into equation (13).

Finally, as w(t) = dz(t)
dt , equation (12) can be computed easily.

r(t) =

(
3pαB

4a2l

) 1
3

t
2
3 , (11)

z(t) =

(
4

3pα

) 2
3
(
aB

l

) 1
3 3

2
t
2
3 , (12)

w(t) =

(
4

3pα

) 2
3
(
aB

l

) 1
3

t−
1
3 . (13)

3.2 Laminar theory in quasi-2D

Entrainment occurs through eddies which are turbulent phenomena. There are no eddies and no entrainment
for the laminar case, therefore ue = 0.

Subsequently, the volume conservation given by equation (6) becomes dV
dt = Aeue = 0. Thus V = constant

and equation (14) is obtained.

Newton's second law, equation (7) can be written as d(ρV w(t))
dt = ρV g′. With no volume change and with the

Boussinesq approximation, the equation reduces as ρtV
dw(t)
dt = ρtV g

′ and then equation (16) with w0 constant
set as w0 = 0.

Also, as w(t) = dz(t)
dt , by integrating, the equation becomes equation (15), with z0 constant set as z0 = 0.

r(t) = Constant, (14)

z(t) =
1

2
g′t2, (15)

w(t) = g′t. (16)
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Part IV

Results

1 Qualitative analysis

1.1 Intuitive idea

As in the three-dimensional case, the laminar case was fairly explicit. The thermal did not entrain any �uid and
kept a self-similar shape. In quasi-2D, this was also the case and the thermal fell straight down. Nevertheless,
if a turbulent thermal was released in 3D, it created a vortex ring which expanded with time and fell down in
the apparatus. In quasi-2D, due to restriction the thermal couldn't evolve in this way. A �rst intuition on the
behavior of the quasi-2D thermal evolution could be seen with a simple experiment. It consisted in releasing a
thermal small enough so that its environment could be considered 3D at �rst. While expanding, the thermal
did meet the quasi-2D restriction and evolved accordingly. As expected, at �rst a vortex ring was created and
it was growing bigger as illustrated by �gure 4a. As it was growing, it became more and more restrained and
could not develop in the x direction anymore, but it could still spread in the y-direction. Subsequently, the
thermal did split as represented in �gure 4b and each branch created another vortex ring.

1.2 Empirical description

This approach started to explain how the turbulent thermal evolved in quasi-2D. The thermal which was in
quasi-2D from the start did grow to create a vortex ring, but it couldn't keep expanding due to the space
restriction and thus split into two. Indeed, a revolution of this image around the center of the thermal would
exhibit a vortex ring as it did with the 3D case. Afterwards, the di�erence with the 3D case was that each of the
two branches could now behave as the initial branch did and create a secondary vortex ring. While each branch
split, it also started to rotate around itself creating eddies. This is identical to the phenomenon occurring in
the vortex ring which rotates around itself. The process then repeated itself. At the center of the thermal,
interactions occurred between the branches of the thermal and the motion became more complex . At the same
time, at the edge of the thermal, the only interactions came from the ambient. Thus, the branches behavior
was not changed and straight lines were distinguishable. It produced a conical shape as pictured in �gure 4c

(a) Small thermal creating a vor-
tex ring

(b) Vortex ring constrained in
2D splitting into 2 parts creating
other vortex rings

(c) Typical thermal a few minutes after the release

Figure 4: Thermal evolving between 3D and quasi-2D

1.3 Phenomenological study of the volume in�uence

In order to study the in�uence of the volume of the thermal and choose which one we would study, we used
the triangular device described earlier. Two sets of tests with a di�erent amount of salt were done, each with
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volumes of 5 mL, 10 mL, 15 mL and 20 mL as detailed in section �3 of part II. The samples with a higher
proportion of salt had some momentum at the beginning but did split as we expected them to do. The ones
without much salt had less momentum. The 4 volumes studied seemed to behave in a similar way but if the
volume was increased, the shift to the turbulent thermal was occurring later. Also, if a lot of salt was added, it
appeared that the thermal had more momentum when released. Since the turbulent di�usion was more de�ned
and distinguishable with small volumes and small amounts of salt, the thermals used were created with an
amount of salt of either 0.04 % or 2 % and a volume of less than 5 mL. It was also convenient as using bigger
volume could have resulted in the thermals spreading o�-camera.

2 Quantitative analysis

2.1 Code

2.1.1 Core principle of the code

A code was used to compute the height and the speed of the thermal from the videos and compare it to the
theory. It is fully detailed in section �C of the appendix. Matlabr was advised for this sort of analysis so I
learned it and did the code detailed afterwards. In this section the x and the y are di�erent than before. Since
matrices were considered, x was horizontal and y was vertical. Also, the origin was not placed on the tank
anymore but on the top left of the recorded image.

The principle of the code was to cut the videos so that each frame could be studied individually. For
each frame, the matrix of the picture was extracted, and the head of the thermal and its center of mass were
computed out. It was expected to have a better match between the model and the center of mass than between
the model and the head of the thermal. As the head of the thermal moved down, it may have been subject to
many variations and interactions with others branches produced by the thermal. Since the center of mass is a
more general variable, it depicted a better characteristic velocity.

Afterwards, by comparing two frames, the instantaneous speeds of the thermal could be calculated by
dividing the distance traveled by the time between two frames. As the calculations were done for each frame,
they had to be minimized: they increase the complexity of the code i.e. the computational time. Also, during
the creation of the algorithm, I took into account that it may be used by other students next year as there
are a lot of interesting things that were not studied here by lack of time. Thus, I added some commands not
necessary for our experiments but which do not in�uence the complexity.

2.1.2 Delimitation of a thermal

Since a blue thermal was used on a mostly white background, I used this factor to determine the contour of the
thermal. As explained earlier, the molecular di�usion (of either salt or dye) was negligible before the turbulent
di�usion so the dye could be considered to be a good proxy for the thermal. The assumption was pushed further
by saying that the �blueness� of the thermal was in fact a good proxy for its density. If the thermal was dark
blue, it was considered denser than if it was light blue.

Also, the images are encoded in the RGB (Red, Green, Blue) system on a matrix with the values of the
pixels comprised between 0 and 255 (coded on 8 bits). It means that for a colored image of 1920 pixels × 1080
pixels, the matrix has a dimension of 1920 × 1080 × 3 in pixels. These 3-color matrices added together then
displayed approximately 1.6 × 107shades of visible colors that the human eye can see as in �gure 5a. Their
absence is seen as black (i.e. 0 for each) and their presence is seen as white (i.e. 255 for each).

I used this to distinguish the thermal from the ambient. As the goal was to highlight the blue of the picture,
I took the values of the �rst and the second matrix (R +G) and added them together as in �gure 5b. All the
pixels containing some red or green thus took higher values and became brighter. The blue thermal which only
contained a negligible amount of red and green was displayed as really dark.

For practical reasons, a matrix where high values of pixel meant high concentration of dye was aimed for
so I took the complementary value of each pixels as displayed in �gure 5c. Then, a value from which the pixel
could be considered blue enough to be in the thermal had to be chosen. If this value was too high, some parts of
the thermals would be missed and if it was too low, other parts than the thermal would have been taken by the
code as the thermal. By looking at di�erent thermals, it was determined that the pixel belongs to the thermal
if the value is more than D = 140 . There was no blue (or any color containing blue) in the frame except the
thermal and there was a program made to remove any blue in the surrounding of the thermal. However, if a
smurf were to hop in front of the thermal during a video, there would be no way of getting rid of it, the video
would either have to be cut in time just before the interference (and then the graphs too) or discarded.
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(a) Picture of a thermal (b) Picture of a thermal
with the R and G part of the
matrix added together

(c) Negative of a picture of
a thermal with the R and G
part of the matrix

Figure 5: Visualization of the manipulations made on the thermal throughout the code

2.1.3 Computations on the head of the thermal and of its barycenter

Height of the head of thermal (HoT) To know the position of the thermal, I did a function which was
going through all the columns and then all the lines of the matrix. For each line in a said column, I only took
into account the pixels that had a value higher than D. Amongst these pixels, I took the one which was the
closest to the bottom of the tank by comparing the values associated to the line the pixels were on. Indeed,
as said before, the lower the position in the tank is, the higher the y-value is. For each column, I thus had
a �maximum pixel� which de�ned by its position a local HoT. Afterwards, by comparing all these pixels and
taking the one with the highest value, the lowest one in the tank, the HoT was obtained. Obviously, the speed
obtained from this was the speed projected on the y-axis, as only the value of the height of the HoT was taken.

Height of the Center of mass (CoM) The CoM was obtained through a similar but more complex process
as the density of the thermal had to be taken into account for the x and the y coordinates. Since it is the CoM
which is computed here, each pixel was considered with a di�erent value regarding its density. This was done
by using the value of the pixel in the matrix: the higher it was, the denser it was.

To get the x-coordinate of the CoM, the algorithm �rst went through all the columns and for each of them,
added up all the values of the thermal's pixels. The total density of each column TD was thus obtained and
the barycenter of this equivalent row in x was the barycenter of the matrix in x. Afterwards, a variable WD
was created for the sum of the densities of each column multiplied by the x coordinate of the column. This
corresponded to a weighted density. The x-coordinate was then given by the ratio of the weighted density to
the total density as shown more consistently by equation (17). D is the density of a pixel, j the x coordinate of
a column. TD =

∑
columns(

∑
rowsD) and WD =

∑
columns(

∑
rowsD) ∗ j .

It was symmetrically done for the y-coordinate and the output of the function was the round value of both
coordinates as they have to be integers since they are a length in number of pixels.

Barycenter(x) =

∑
columns(

∑
rowsD ∗ j)∑

columns

∑
rowsD

. (17)

Calculation of the speeds of the thermal Having the coordinates of the HoT and the CoM for each frame
and the time between them, a new array of dimension (NbFrame-1) was created to store the corresponding
instantaneous speed. To get them, the distance traveled between two frames was divided by the time it took.

2.1.4 Major limitation: the frame-rate and the resolution

When plotting the computed data, there was a problem: the values were either 0 or a constant. I found that it
was due to the frame-rate being too high regarding the resolution. The thermal did not have the time to travel
more than a pixel between two frames. It was so slow that the time it took to go from one pixel to another was
lower than the time separating two frames. Two outcomes were then possible. Either it did not have the time to
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go to the next pixel and the speed was 0 pixels/frame, or it had the time and traveled one pixel (sometimes two
pixels when it was a bit faster). The constant obtained was therefore the length of a pixel (the length between
the middle of two pixels) divided by the time between two frames.

Hence, some frames in the code had to be skipped. However, Matlabr does not allow to skip frames so I
had to code it. To know how many loops should be skipped, the frame-rate F had to be taken into account as
well as the real length of a pixel P, the minimal speed of the thermal umin and the smallest number of pixels
that the thermal should travel between two frames when it was at its slowest speed n. Therefore, the number of
frames that had to be skipped was the integer corresponding to equation (18). Also, it was important to check
that by doing so, there were still enough points to have a proper curve and study the thermal. Hence, for a
video of t seconds, the number of points on the plot was be the integer part of equation (19).

NbSkipFrames =
nPF

umin
, (18)

NbPoints =
FT

NbSkipFrames
. (19)

I chose a minimal speed of 0.1 cm.s−1 which gave a large margin of error. By wanting the thermal to travel
at least 3 pixels when it was at its extreme lowest speed; with equation (18) and a margin, the number of frames
that had to be skipped was 49. For a video of 2 minutes, using equation (19), I computed that there was 73
points, which was enough to have a proper curve. In the end, the curves were more precise for lower speeds and
there were still enough points to be able to study the evolution of the thermals properly.

2.2 Results from the code for a single experiment

2.2.1 Inclusion of a virtual origin

Necessity of a virtual origin To compare the theoretical model to the experimental one, a logarithm plot
was used and the equations of the type z(t) = tn became ln(z(t)) = n.ln(t). Looking at the gradient of
the curve then gave a precise value for the power of t considered. However, everything was shifted due to
the experiments not starting with a volume V = 0 and beginning as a laminar �ow even if it was turbulent
afterwards. A virtual origin was thus needed and the curves plotted were of the type z(t)− z0 = (t− t0)n and
became ln(z(t) − z0) = n.ln(t − t0). These two parameters greatly changed the graphs as exhibited with the
di�erence between �gure 6a and �gure 6b.
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Figure 6: In�uence of the virtual origin on the plot of a thermal. These graphs show the
barycenter of the thermal in x

Determination of the virtual origin To determine the virtual origin, the expansion of the radius of
the thermal was studied and traced back to zero. Indeed, as the evolution of r(z) was linear in z, by tracing
straight lines corresponding to the edge of the thermal and taking their intersection as shown by the blue lines
in �gure 4c, it was possible to obtain the coordinates of the virtual origin. This was done by computer. The
code requested the user to take two points on each line. It computed the coordinates in x and y of the virtual
origin according to the equations (20). The X and Y are arrays of dimension four which were containing the
coordinates of the four points selected.
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{
x = Y (1)−Y (3)+m2X(3)−m1X(1))

m2−m1
, m1 = Y (2)−Y (1)

X(2)−X(1) ,

y = m2∗Y (1)−m1Y (3)+m1m2(X(3)−X(1))
m2−m1

, m2 = Y (4)−Y (3)
X(4)−X(3) .

(20)

Errors on the measures Some important parameters which I wanted to include were the uncertainties as
many errors were induced. For example, the precision when the distances were measured or when the speeds
were converted from pixels per frames to meters per second was limited. There was also an error which was
related to how the camera took the picture. If two points separated by a distance d were taken at the top and
in the middle of the tank, the corresponding distances in pixels were not the same. As the distance between the
camera and the top of the tank or the distance between the camera and the middle of the tank were not the
same, the corresponding measures of d were not the same. Therefore, these uncertainties were implemented in
the code and on the plots.

Results for an experiment The core of the experiments were thermals of 3.5 mL released using two metal
strips submerged in oil as detailed earlier. In �gure 7 and �gure 8, the results for a typical experiment are
presented with the data points in blue, the best linear �t in red and the model in black. On top of the graph
is also shown the gradient, the intersection and R2. Since the plots are presented in a log scale, the important
parameter to look at is the gradient. By considering the model given by equation (12) and equation (13), a
gradient of 2

3 is expected for the height of the thermal and of − 1
3 for its speed.

Concerning the heights of the thermal, the error bars are quite small as the precision was rather high. The
distances were of the order of 10 cm when the errors were of the order of a few pixels, which usually had a
characteristic dimension of 5× 10−2 cm. However, the errors bars for the speeds grew really high because the
speed became really small with time and there was a limitation due to the resolution as explained earlier. As
predicted, the gradient of the HoT was further away from the model than the gradient of the CoM.
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Figure 7: Height of the thermal against time for CoM and HoT for a single experiment
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Figure 8: Speed of the thermal against time for CoM and HoT for a single experiment
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2.3 Presentation of a set of experiments

In this section, �gure 9 shows the height and the speed of the CoM for a set of experiments. The similar plots
concerning the head of the thermal are presented in the appendix section �B. In red are the best �ts of the
nine experiments, in blue the average of the best �ts and in black the theoretical model. In these graphs, it is
noteworthy that most experiments have a similar �t and that they are quite close to the model.
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Figure 9: Height and speed of the CoM for nine experiments

2.4 Analysis of the results

Even if the gradients of the curves seem close by looking at the absolute di�erence, the value considered should
be the relative error on the measure given by equation (21). The relative errors from the theoretical model for
the height and the speed of the CoM are respectively 12.5 % and 8 %. The �t of the data points is similar
to the model so it is reasonably satisfactory but they are globally distributed over it. It means that there was
a non-negligible systematic error repeated through the experiments or that a phenomenon had been omitted.
Also, the distribution of the gradients means that some parameters had bigger consequences than expected.
However, there are various parameters that could be introduced or improved with more time and which would
give results closer to the model.

RelErr =

∣∣∣∣V alueexp − V aluethV alueth

∣∣∣∣× 100. (21)

2.4.1 Human errors

The biggest errors were induced by the user and the method adopted to create the thermal. With the current
way of producing the thermal, some momentum was generated. The thermal was poured between the metal
strips and then did rest a bit before being released in the oil. In order to not induce too much �ow in the
water by moving the strips, they were placed on top of the oil layer. When released, the thermal had some
momentum which was not totally canceled by the oil layer. Also, the virtual origin was not precise enough for
these experiments. For certain thermals, the branches on the sides became really thin because the dye died out.
The cone was consequently hard to determine. As the time origin was taken by looking at the data and �nding
the corresponding time for a said z origin, another error was introduced. Since the virtual origin changed the
gradient of the plot, the result was altered.

2.4.2 Uncertainties introduced by the code

Added to these errors, the code also introduced some uncertainties as it took out values of densities for the
thermal based on how blue it was. The �rst interference came from the shadows. As there was a metal structure
to hold the tank, there were shadows generated by it. These dark shadows interfered with the center of mass
and induced a shift in the intersect of the data curve with the y-axis. Besides, when the thermal was released, a
little amount of it was sticking for a small time to the metal strips and was released after the �rst thermal. This
second thermal caused a sharp bend in the evolution of the data points. The speed of the new CoM became a
weighted average of the CoM of the two thermals which were at di�erent stages of their evolution. Thus, the
gradient was also di�erent.
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2.4.3 Conclusion

In the presented experiments, the evolution of the height of the thermal and of its speed were close to the
theoretical model, which implies that it was indeed reasonably good and represents a satisfactory basis for
future works. The relative error was still of the order of 10 %. This value is high and entails the presence of
errors either in the experimentation or in the model. Many of the failures of the said experimentation could be
improved through di�erent methods, both in the apparatus itself and in the way the experiments are conducted.
Implementing these may allow further studies to conclude on the accuracy of the theoretical model presented
here for a turbulent thermal in quasi-2D.

Summary

In this study, we discovered that a restriction on one dimension had an interesting impact on the structure of
a thermal. Indeed, in 3D, they tend to get a mushroom shape but here, with a density di�erence between the
thermal and the ambient of 0.04 %, the initial thermal splits into two smaller branches which in turn splits into
two smaller branches and so on. Furthermore, an explanation for the initial velocity of the thermal was found
as it seems that the thermal evolves in a �rst part as a laminar �ow. However, it should be con�rmed that it
was not due to an initial momentum given through the release, even though the method proposed by Sanchez
(1989) [19] was seemingly improved. Finally, the experiments did �t reasonably the theoretical model exposed
for the turbulent case of the quasi-two-dimensional thermal which were predicting an evolution of the height
in t

2
3 and a decrease of the speed in t−

1
3 . More experiments should now be conducted in order to enhance the

accuracy of the measurements and to con�rm its coherence with the model presented.

Directions for further studies

Some improvements could be introduced. Having a bigger or longer tank would allow to have either more points
on the graphs (by making the thermal faster) or to study the thermal for a longer time. A camera with a better
resolution would allow the same kind of improvements and could be bought inexpensively as the camera was
only 2MP which is a low standard nowadays. Increasing the resolution of the camera is one of the easiest and
most e�cient improvement that could be done here as multiplying the resolution by ten would reduce the error
by a factor ten. Also, undertaking more experiments (they are highly reproducible) would decrease the random
error on the measures and it would allow the user to pick solely the experiments with a well de�ned cone in order
to acquire a very precise virtual origin. Finally, improving the code (regarding shadows or the background) or
another system of release for the thermal would reduce the systematic error. Strati�ed oil, a di�erent material
(to avoid a second thermal) or another design submerged in oil (for example a cylindrical device that would
rotate around a �xed axis) may allow to have less momentum introduced.

As presented here, there are a lot of improvements that could still be done on this apparatus and these
experiments to improve the precision of the results. The errors would be greatly reduced and a conclusion on
the accuracy of the theory may be enhanced if the data points were indeed converging towards the model as
expected.
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Appendix

A Tables of experiments

The following graphs detail experimentation on the thermals and the way to create them. When a variable X
is used as an input for an experiment (typically for the proportion of salt), it means that it was not measured
precisely but nonetheless constant for a set of experiment. Table 3 presents results obtained with pipes and
table 5 was done with the triangular device, to know which volumes and proportions of salt should be considered
for following experiments. Table 4 concerns experimentation on the use of oil and a pipette. The main goal was
to see if big thermals could be created this way.

Goal Release method Details
Salt
percentage
(mass)

Volume of
thermal

Result

Test the validity of
the pipe method.

A pipe was
submerged in the
solution of thermal
and then blocked
in it by making the
other extremity of
the pipe air-locked.

In 3D.
X % 1 mL

A vortex ring is
created.

In quasi-2D.
The expected
turbulent quasi-2D
thermal is observed.

Analyze the
in�uence of salt on
the thermal.

The same method
as before was used.

0 %
1 mL

The thermal with salt
is more than two
times faster than the
other one without salt

X %

Analyze the
in�uence of the
height in the pipe.

The same method
as before was used.

Ratio of the
height in the
pipe = 2.

X % 1 mL
Similar thermals.

X % 1 mL

Analyze the
in�uence of the
height of release.

The same method
as before was used.

Released at
water level. X % 1 mL Similar thermals.
Released

10cm further

Table 3: First tests with a pipe

Goal Release method Details
Salt

percentage
(mass)

Volume of
thermal

Result

Create a proper
thermal using oil.

A pipette was used
to create a bubble
in the oil. After
some time the
bubbles pierced the
oil layer.

There was not
enough dye for the

experiment.
X % ~0.5 mL

A really
well-de�ned

quasi-2D turbulent
thermal appears

from the beginning
of the release.

Volume added to
make the thermal

more
distinguishable.

X % ~1 mL

Similar to the
previous

experiment but
with an added
delay for the
turbulent
expansion.

Number of
experiments: >5
But 2 bubbles
produced

X % ~1 mL

Similar to the
previous

experiment but a
second smaller

thermal is released

Table 4: Tests to create a good thermal using a pipette and oil.
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Goal Release method
Salt
percentage
(mass)

Volume of
thermal

Result

Comparison
with respect to
the salt
proportion

Analyze the
in�uence of the
variation of 5
mL of thermal
for a low
amount of salt

The triangular
device was used.
The thermal is
poured in it and
then the device
is rotated at the
surface of the
water.

~1 %

5 mL

A 2D mushroom cloud
appears �rst. It evolves
quickly into a quasi-2D

thermal.

The shape of
the thermal in
the second part
is well de�ned.

10 mL

A 2D mushroom cloud
appears �rst. It evolves a
bit later into a quasi-2D

thermal.

15 mL

A 2D mushroom cloud
appears �rst. It evolves
slowly into a quasi-2D

thermal.
20 mL Similar to 15 mL.

Analyze the
in�uence of the
variation of 5
mL of thermal
for a high
amount of salt

The same
method as
before was used

~10 %

5 mL Same as for 1 % of salt The mushroom
shape is more
persistent. The
turbulent
thermal
develops later
and does not
have a well
de�ned shape.

10 mL

A 2D mushroom cloud is
created. It keeps this
shape while spreading
horizontally and then
evolves as a quasi-2D

thermal.

15 mL

Similar to 10 mL but the
turbulent motion

develops at the bottom of
the tank.

20 mL
Similar to 15 mL but the
spread occurs on a wider

area.

Table 5: Volume and salt in�uence on the evolution of the thermal with the triangular device

B Presentation of a set of experiment

Here, the heights and the speeds of the HoT are presented for 9 experiments from a same set. These measures
are close to the model but the errors are bigger than for the CoM. It makes sense as the CoM is an overall value
and the HoT is more localized. The errors explained are thus increased for this parameter.
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(a) Plot of the height of HoT against time for nine experi-
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(b) Plot of the speed of HoT against time for nine experi-
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Figure 10: Height and speed of the HoT for nine experiments
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C Detailed Code

Figure 11: Core of the code

(a) Function CenterofMass (b) Function HeadofThermal

Figure 12
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